3.130 \(\int \frac{x^5 (a+b \sin ^{-1}(c x))}{(d-c^2 d x^2)^{5/2}} \, dx\)

Optimal. Leaf size=219 \[ -\frac{\sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{c^6 d^3}-\frac{2 \left (a+b \sin ^{-1}(c x)\right )}{c^6 d^2 \sqrt{d-c^2 d x^2}}+\frac{a+b \sin ^{-1}(c x)}{3 c^6 d \left (d-c^2 d x^2\right )^{3/2}}+\frac{b x \sqrt{d-c^2 d x^2}}{c^5 d^3 \sqrt{1-c^2 x^2}}-\frac{b x \sqrt{d-c^2 d x^2}}{6 c^5 d^3 \left (1-c^2 x^2\right )^{3/2}}+\frac{11 b \sqrt{d-c^2 d x^2} \tanh ^{-1}(c x)}{6 c^6 d^3 \sqrt{1-c^2 x^2}} \]

[Out]

-(b*x*Sqrt[d - c^2*d*x^2])/(6*c^5*d^3*(1 - c^2*x^2)^(3/2)) + (b*x*Sqrt[d - c^2*d*x^2])/(c^5*d^3*Sqrt[1 - c^2*x
^2]) + (a + b*ArcSin[c*x])/(3*c^6*d*(d - c^2*d*x^2)^(3/2)) - (2*(a + b*ArcSin[c*x]))/(c^6*d^2*Sqrt[d - c^2*d*x
^2]) - (Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(c^6*d^3) + (11*b*Sqrt[d - c^2*d*x^2]*ArcTanh[c*x])/(6*c^6*d^
3*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.316104, antiderivative size = 234, normalized size of antiderivative = 1.07, number of steps used = 9, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {4703, 4677, 8, 321, 206, 288} \[ -\frac{4 x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c^4 d^2 \sqrt{d-c^2 d x^2}}-\frac{8 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^6 d^3}+\frac{x^4 \left (a+b \sin ^{-1}(c x)\right )}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac{b x^3}{6 c^3 d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{5 b x \sqrt{1-c^2 x^2}}{6 c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{11 b \sqrt{1-c^2 x^2} \tanh ^{-1}(c x)}{6 c^6 d^2 \sqrt{d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^5*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

-(b*x^3)/(6*c^3*d^2*Sqrt[1 - c^2*x^2]*Sqrt[d - c^2*d*x^2]) + (5*b*x*Sqrt[1 - c^2*x^2])/(6*c^5*d^2*Sqrt[d - c^2
*d*x^2]) + (x^4*(a + b*ArcSin[c*x]))/(3*c^2*d*(d - c^2*d*x^2)^(3/2)) - (4*x^2*(a + b*ArcSin[c*x]))/(3*c^4*d^2*
Sqrt[d - c^2*d*x^2]) - (8*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/(3*c^6*d^3) + (11*b*Sqrt[1 - c^2*x^2]*ArcTa
nh[c*x])/(6*c^6*d^2*Sqrt[d - c^2*d*x^2])

Rule 4703

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + (-Dist[(f^2*(m - 1))/(2*e*(p +
1)), Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n, x], x] + Dist[(b*f*n*d^IntPart[p]*(d + e*x^2
)^FracPart[p])/(2*c*(p + 1)*(1 - c^2*x^2)^FracPart[p]), Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSi
n[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && Gt
Q[m, 1]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin{align*} \int \frac{x^5 \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{5/2}} \, dx &=\frac{x^4 \left (a+b \sin ^{-1}(c x)\right )}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac{4 \int \frac{x^3 \left (a+b \sin ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{3/2}} \, dx}{3 c^2 d}-\frac{\left (b \sqrt{1-c^2 x^2}\right ) \int \frac{x^4}{\left (1-c^2 x^2\right )^2} \, dx}{3 c d^2 \sqrt{d-c^2 d x^2}}\\ &=-\frac{b x^3}{6 c^3 d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{x^4 \left (a+b \sin ^{-1}(c x)\right )}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac{4 x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c^4 d^2 \sqrt{d-c^2 d x^2}}+\frac{8 \int \frac{x \left (a+b \sin ^{-1}(c x)\right )}{\sqrt{d-c^2 d x^2}} \, dx}{3 c^4 d^2}+\frac{\left (b \sqrt{1-c^2 x^2}\right ) \int \frac{x^2}{1-c^2 x^2} \, dx}{2 c^3 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (4 b \sqrt{1-c^2 x^2}\right ) \int \frac{x^2}{1-c^2 x^2} \, dx}{3 c^3 d^2 \sqrt{d-c^2 d x^2}}\\ &=-\frac{b x^3}{6 c^3 d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}-\frac{11 b x \sqrt{1-c^2 x^2}}{6 c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{x^4 \left (a+b \sin ^{-1}(c x)\right )}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac{4 x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c^4 d^2 \sqrt{d-c^2 d x^2}}-\frac{8 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^6 d^3}+\frac{\left (b \sqrt{1-c^2 x^2}\right ) \int \frac{1}{1-c^2 x^2} \, dx}{2 c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (4 b \sqrt{1-c^2 x^2}\right ) \int \frac{1}{1-c^2 x^2} \, dx}{3 c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{\left (8 b \sqrt{1-c^2 x^2}\right ) \int 1 \, dx}{3 c^5 d^2 \sqrt{d-c^2 d x^2}}\\ &=-\frac{b x^3}{6 c^3 d^2 \sqrt{1-c^2 x^2} \sqrt{d-c^2 d x^2}}+\frac{5 b x \sqrt{1-c^2 x^2}}{6 c^5 d^2 \sqrt{d-c^2 d x^2}}+\frac{x^4 \left (a+b \sin ^{-1}(c x)\right )}{3 c^2 d \left (d-c^2 d x^2\right )^{3/2}}-\frac{4 x^2 \left (a+b \sin ^{-1}(c x)\right )}{3 c^4 d^2 \sqrt{d-c^2 d x^2}}-\frac{8 \sqrt{d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )}{3 c^6 d^3}+\frac{11 b \sqrt{1-c^2 x^2} \tanh ^{-1}(c x)}{6 c^6 d^2 \sqrt{d-c^2 d x^2}}\\ \end{align*}

Mathematica [C]  time = 0.307183, size = 169, normalized size = 0.77 \[ \frac{\sqrt{d-c^2 d x^2} \left (\sqrt{-c^2} \left (2 a \left (3 c^4 x^4-12 c^2 x^2+8\right )+b c x \sqrt{1-c^2 x^2} \left (6 c^2 x^2-5\right )+2 b \left (3 c^4 x^4-12 c^2 x^2+8\right ) \sin ^{-1}(c x)\right )+11 i b c \left (1-c^2 x^2\right )^{3/2} \text{EllipticF}\left (i \sinh ^{-1}\left (\sqrt{-c^2} x\right ),1\right )\right )}{6 c^4 \left (-c^2\right )^{3/2} d^3 \left (c^2 x^2-1\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^5*(a + b*ArcSin[c*x]))/(d - c^2*d*x^2)^(5/2),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(Sqrt[-c^2]*(b*c*x*Sqrt[1 - c^2*x^2]*(-5 + 6*c^2*x^2) + 2*a*(8 - 12*c^2*x^2 + 3*c^4*x^4)
+ 2*b*(8 - 12*c^2*x^2 + 3*c^4*x^4)*ArcSin[c*x]) + (11*I)*b*c*(1 - c^2*x^2)^(3/2)*EllipticF[I*ArcSinh[Sqrt[-c^2
]*x], 1]))/(6*c^4*(-c^2)^(3/2)*d^3*(-1 + c^2*x^2)^2)

________________________________________________________________________________________

Maple [C]  time = 0.316, size = 459, normalized size = 2.1 \begin{align*} -{\frac{a{x}^{4}}{{c}^{2}d} \left ( -{c}^{2}d{x}^{2}+d \right ) ^{-{\frac{3}{2}}}}+4\,{\frac{a{x}^{2}}{d{c}^{4} \left ( -{c}^{2}d{x}^{2}+d \right ) ^{3/2}}}-{\frac{8\,a}{3\,d{c}^{6}} \left ( -{c}^{2}d{x}^{2}+d \right ) ^{-{\frac{3}{2}}}}-{\frac{b\arcsin \left ( cx \right ){x}^{2}}{{c}^{4}{d}^{3} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{bx}{{c}^{5}{d}^{3} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}+{\frac{b\arcsin \left ( cx \right ) }{{d}^{3}{c}^{6} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}+2\,{\frac{b\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\arcsin \left ( cx \right ){x}^{2}}{{c}^{4} \left ({c}^{2}{x}^{2}-1 \right ) ^{2}{d}^{3}}}-{\frac{bx}{6\,{c}^{5} \left ({c}^{2}{x}^{2}-1 \right ) ^{2}{d}^{3}}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}}-{\frac{5\,b\arcsin \left ( cx \right ) }{3\,{c}^{6} \left ({c}^{2}{x}^{2}-1 \right ) ^{2}{d}^{3}}\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }}-{\frac{11\,b}{6\,{d}^{3}{c}^{6} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1}+i \right ) }+{\frac{11\,b}{6\,{d}^{3}{c}^{6} \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-d \left ({c}^{2}{x}^{2}-1 \right ) }\sqrt{-{c}^{2}{x}^{2}+1}\ln \left ( icx+\sqrt{-{c}^{2}{x}^{2}+1}-i \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x)

[Out]

-a*x^4/c^2/d/(-c^2*d*x^2+d)^(3/2)+4*a/c^4*x^2/d/(-c^2*d*x^2+d)^(3/2)-8/3*a/c^6/d/(-c^2*d*x^2+d)^(3/2)-b*(-d*(c
^2*x^2-1))^(1/2)/c^4/d^3/(c^2*x^2-1)*arcsin(c*x)*x^2-b*(-d*(c^2*x^2-1))^(1/2)/c^5/d^3/(c^2*x^2-1)*(-c^2*x^2+1)
^(1/2)*x+b*(-d*(c^2*x^2-1))^(1/2)/c^6/d^3/(c^2*x^2-1)*arcsin(c*x)+2*b*(-d*(c^2*x^2-1))^(1/2)/c^4/(c^2*x^2-1)^2
/d^3*arcsin(c*x)*x^2-1/6*b*(-d*(c^2*x^2-1))^(1/2)/c^5/(c^2*x^2-1)^2/d^3*(-c^2*x^2+1)^(1/2)*x-5/3*b*(-d*(c^2*x^
2-1))^(1/2)/c^6/(c^2*x^2-1)^2/d^3*arcsin(c*x)-11/6*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^6/d^3/(c^2*x^
2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)+11/6*b*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c^6/d^3/(c^2*x^2-1)*ln(I*
c*x+(-c^2*x^2+1)^(1/2)-I)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.4244, size = 1045, normalized size = 4.77 \begin{align*} \left [\frac{11 \,{\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt{d} \log \left (-\frac{c^{6} d x^{6} + 5 \, c^{4} d x^{4} - 5 \, c^{2} d x^{2} - 4 \,{\left (c^{3} x^{3} + c x\right )} \sqrt{-c^{2} d x^{2} + d} \sqrt{-c^{2} x^{2} + 1} \sqrt{d} - d}{c^{6} x^{6} - 3 \, c^{4} x^{4} + 3 \, c^{2} x^{2} - 1}\right ) - 4 \,{\left (6 \, b c^{3} x^{3} - 5 \, b c x\right )} \sqrt{-c^{2} d x^{2} + d} \sqrt{-c^{2} x^{2} + 1} - 8 \,{\left (3 \, a c^{4} x^{4} - 12 \, a c^{2} x^{2} +{\left (3 \, b c^{4} x^{4} - 12 \, b c^{2} x^{2} + 8 \, b\right )} \arcsin \left (c x\right ) + 8 \, a\right )} \sqrt{-c^{2} d x^{2} + d}}{24 \,{\left (c^{10} d^{3} x^{4} - 2 \, c^{8} d^{3} x^{2} + c^{6} d^{3}\right )}}, \frac{11 \,{\left (b c^{4} x^{4} - 2 \, b c^{2} x^{2} + b\right )} \sqrt{-d} \arctan \left (\frac{2 \, \sqrt{-c^{2} d x^{2} + d} \sqrt{-c^{2} x^{2} + 1} c \sqrt{-d} x}{c^{4} d x^{4} - d}\right ) - 2 \,{\left (6 \, b c^{3} x^{3} - 5 \, b c x\right )} \sqrt{-c^{2} d x^{2} + d} \sqrt{-c^{2} x^{2} + 1} - 4 \,{\left (3 \, a c^{4} x^{4} - 12 \, a c^{2} x^{2} +{\left (3 \, b c^{4} x^{4} - 12 \, b c^{2} x^{2} + 8 \, b\right )} \arcsin \left (c x\right ) + 8 \, a\right )} \sqrt{-c^{2} d x^{2} + d}}{12 \,{\left (c^{10} d^{3} x^{4} - 2 \, c^{8} d^{3} x^{2} + c^{6} d^{3}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

[1/24*(11*(b*c^4*x^4 - 2*b*c^2*x^2 + b)*sqrt(d)*log(-(c^6*d*x^6 + 5*c^4*d*x^4 - 5*c^2*d*x^2 - 4*(c^3*x^3 + c*x
)*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1)*sqrt(d) - d)/(c^6*x^6 - 3*c^4*x^4 + 3*c^2*x^2 - 1)) - 4*(6*b*c^3*x^3
 - 5*b*c*x)*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1) - 8*(3*a*c^4*x^4 - 12*a*c^2*x^2 + (3*b*c^4*x^4 - 12*b*c^2*
x^2 + 8*b)*arcsin(c*x) + 8*a)*sqrt(-c^2*d*x^2 + d))/(c^10*d^3*x^4 - 2*c^8*d^3*x^2 + c^6*d^3), 1/12*(11*(b*c^4*
x^4 - 2*b*c^2*x^2 + b)*sqrt(-d)*arctan(2*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1)*c*sqrt(-d)*x/(c^4*d*x^4 - d))
 - 2*(6*b*c^3*x^3 - 5*b*c*x)*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1) - 4*(3*a*c^4*x^4 - 12*a*c^2*x^2 + (3*b*c^
4*x^4 - 12*b*c^2*x^2 + 8*b)*arcsin(c*x) + 8*a)*sqrt(-c^2*d*x^2 + d))/(c^10*d^3*x^4 - 2*c^8*d^3*x^2 + c^6*d^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(a+b*asin(c*x))/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (b \arcsin \left (c x\right ) + a\right )} x^{5}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arcsin(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arcsin(c*x) + a)*x^5/(-c^2*d*x^2 + d)^(5/2), x)